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Abstract
The present study extends the Einstein model for heat capacity of solids to nanoclusters. In the
case of small phases the contribution of surface energy to overall thermodynamic properties of
the system is essential. On that physical background, the heat capacity depends on the size of
cluster through its interface energy. Employing the same relation between Einstein temperature
and the cluster melting point as that for the infinitely large phase, we derive a simple expression
for the heat capacity, CV (n), dependence on the number of atoms in the cluster, n. We explain
the experimentally observed increase of CV (n) compared to CV (∞) of an infinitely large
homogeneous phase, with lowering of the Einstein temperature due to the contribution of the
cluster interface energy. The heat capacity in the model presented scales at high T with the
classical Dulong and Petit 3R limit and tends to zero for T → 0 as required by the third law of
thermodynamics. The model reported could be applied to various systems with nanoparticles,
where the knowledge of specific heat is important; for example formation of nanocomposite
materials, the initial stages of formation of fogs, smog and clouds, etc.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Size effects substantially influence the thermodynamic
behavior of small clusters as reviewed, e.g. by Baletto and
Ferrando [1]. Usually, they are accounted for by considering
the contribution of the surface free energy to the total
energy of the system [1–4]. This contribution could be
crucial for nanocrystals with a comparable number of bulk
and surface atoms. For example, the melting point of
nanoclusters is considerably lowered compared to that of
the infinitely large phase [1–3]. This relates to the specific
heat behavior, too. Therefore, nanosize effects, not taken
into account in the Einstein–Debye model, are expected
to be of great importance for thermodynamic properties of
systems composed of nanoclusters. Experimental evidence
of the size-dependent heat capacity of nanoparticles was
recently reported for metallic nanoclusters and nanostructured
dielectrics [5–7]. Despite its clear physical background this
phenomenon is still subject to a limited number of theoretical
models [1, 8]. Here, we discuss, in the thermodynamic
approach, the contribution of surface free energy to the heat
capacity of nanocrystals.

1 Author to whom any correspondence should be addressed.

The Einstein–Debye phonon model associates the heat
capacity of solids with the bulk atomic vibrations in terms of
phonon modes of quantum oscillators. The model does not
account for the different energies of atoms inside the crystal
and on its surface. The significant reduction of the local forces
as a result of broken symmetry strongly affects the atomic
vibrations of surface atoms. Extensive experimental studies
reveal a larger mean-square displacement of surface atoms
compared to the bulk [9, 10]. Therefore, the heat capacity of
clusters with a comparable number of surface and bulk atoms
should deviate from that of the large systems. In the model
presented here, we evaluate the contribution of surface atoms
to the heat capacity of an n-atomic cluster.

The description of heat capacity is based on the Einstein–
Debye model and accounts for the Lindemann theory of
melting. It expresses the size dependence of CV (n) through the
change of melting point of small crystals. Since the melting
point Tm(n) depends on the number of atoms in the cluster,
the heat capacity CV (n) will also depend on it. An alternative
approach assuming that the heat capacity CV (n) of an n-atomic
cluster is a sum of independent bulk and surface contributions
will be discussed elsewhere [11]. Although our study is
concentrated on the Einstein model it is valid as well for
Debye function through the well known (see for instance [12])
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approximation

TD ≈ TE
3

√
6

π
(1)

therefore the heat capacity could be expressed either by
the Debye temperatures TD (and the corresponding Debye
function FD) or through the Einstein temperature TE (and the
corresponding Einstein function FE).

2. Results and discussion

The essential difference between bulk materials and nanoclus-
ters originates from the role of surface. The change in thermo-
dynamic potential �G(n) of n-atomic crystal as compared to
the gas phase is determined by the change in chemical potential
�μ and the surface energy σ as follows:

�G(n) = nB�μ + nSd2
0σ. (2)

where the total number of atoms n = nB +nS, nB and nS being
the corresponding bulk and surface atoms, d0 is the atomic
diameter.

The melting point, determined by the equality condi-
tion [1–3] of thermodynamic potentials of n-atomic clusters
of the molten and crystalline phase,

�Gcryst (n) = �Gmelt (n) (3)

will deviate from that of the infinitely large crystal [2, 3]. On
that physical background the dependence of cluster melting
point Tm(n) on the number of atoms can be expressed
following [1–3] by:

Tm (n) = Tm

(
1 − C

3
√

n

)
(4)

where Tm is the melting point of the infinitely large crystal
and C is a dimensionless adjustable constant. Equation (4)
shows that the temperature of phase transition of small clusters
could be considerably lowered as a result of the surface energy
contribution.

Apparently, the increase of thermodynamic potential
presented in equation (2) will affect the heat capacity of the
corresponding small phase. It should be noticed, that the
Einstein approach was originally developed for bulk materials.
According to it, the crystal is considered as system of single-
frequency, νE, quantum harmonic oscillators with Bose–
Einstein statistical distribution of energy in the vibrational
state. Single phonon modes involve an infinitely large,
homogeneous phase without interface. The broken symmetry
at the interface generates surface phonons different from that
assumed in the bulk. Therefore, in the case of small phases, the
Einstein frequency, νE, has to be divided in two parts; surface
and bulk. Here we demonstrate that for nanoclusters, νE could
be replaced by an effective frequency νeff

E that accounts for
surface phonon modes as well.

The Lindemann model of melting employs the vibration
of atoms in the crystal to explain the melting transition. It
states that on increasing the temperature at some critical point,
the average amplitude of atomic vibrations becomes larger

than the nearest neighbors distance, causing melting. In the
approximation of the single atom harmonic oscillator, the
Lindemann model [13] gives the following relation between
the Einstein frequency of atomic vibrations, νE and the melting
point Tm:

νE = M

√
Tm

Ad2
0

(5)

where A and d0 are the atomic weight and atomic diameter
respectively, and M is a constant.

The above expression could be applied to evaluate the
variation of Einstein frequency νE(n) with system size.
According to equation (4), the melting temperature Tm(n) is
a function of the number of atoms building the nanocluster.
Therefore, the variation of Einstein frequency with cluster size
can be obtained by replacing Tm with Tm(n) in equation (5). In
this case the Einstein frequency νE(n) varies with the number
of atoms in the cluster as follows:

νeff
E (n) = νE

√
1 − C

3
√

n
. (6)

The corresponding effective Einstein temperature T eff
E is

proportional to the Einstein frequency νeff
E :

T eff
E = hνeff

E

kB
. (7)

Consequently, the Einstein temperature of the small clusters
relates to n as:

T eff
E (n) = TE

√
1 − C

3
√

n
. (8)

According to Einstein model, the basic equation for heat
capacity, CV , is expressed through the Einstein function
FE( TE

T ) as follows:

CV = 3R FE

(
TE

T

)
; TE = hνE

kB
(9)

FE being defined as:

FE (x) = x2ex

(ex − 1)2
; x = TE

T
. (10)

Hence, the resultant heat capacity CV (n) for an n-atomic
cluster can be expressed by T eff

E accounting for the cluster size
after substitution of TE with T eff

E from equation (8).

CV (n) = 3R FE

(
T eff

E

T

)
= 3R FE

⎛
⎝TE

√
1 − C

3√n

T

⎞
⎠ . (11)

The above expression reveals the heat capacity dependence
on the number of atoms in the system, i.e. on the size of
nanocluster. The value of the dimensionless constant C ,
estimated after expressing the interface energy in the terms
of Skapski–Turnbull equation, is of order of 1 [11, 14–16].
Hereafter in our calculations, C in equation (11) is set to 1.
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Figure 1. The heat capacity of an infinitely large homogeneous
phase (solid curve) compared to that of phases consisting of n-atomic
clusters. The upper dotted curve reflects the heat capacity behavior of
a 27-atomic nanocluster; the dashed line in between is respectively
for a 125-atomic complex. The Einstein temperature is TE = 450 K.
The increase of CV (n) is a result of the contribution of the clusters
interfacial energy to the overall heat capacity of the system. The inset
shows the same result in the framework of the Debye approach with
Debye temperature TD = 558 K (see equation (1)).

Figure 1 shows the heat capacity of an infinitely large
homogeneous phase (solid line) compared to that of a phase
consisting of n-atomic clusters (dotted line is for n = 27
and dashed line is for n = 125). The Einstein temperature
is TE = 450 K. The inset shows the same result in the
framework of the Debye approach with Debye temperature
TD = 558 K according equation (1). The increase of CV (n)

is clearly pronounced in both models. The enhancement of
CV (n) is a result of the contribution of the interfacial energy to
the overall heat capacity of the system.

The increase of heat capacity of a phase consisting of
n-atomic clusters as compared to an infinitely large phase
CV (n)−Cinf

V
3R also depends on temperature. This is demonstrated in

figure 2 where the above variation is normalized to the Dulong
and Petit 3R limit.

The observed enhancement of heat capacity is in
agreement with experimental findings, [5, 17, 18]. According
to the present model, this is the result of the lowering
of the effective Einstein temperature T eff

E accounted for by
equations (8), (11). As expected, at high temperatures both
the infinitely large phase and the phase consisting of n-atomic
nanoclusters satisfy the Dulong and Petit 3R limit.

The dependence of the relative increase of heat capacity,
CV (n)−Cinf

V

Cinf
V

on the number of atoms n is presented in figure 3.

The variation of CV (n) is shown at T = 0.25TE where
the deviation of heat capacity is clearly pronounced, as
demonstrated in figure 1. It is seen that the relative increase
remains significant even for n = 105 atoms. At T = 0.25TE,
the variation of the heat capacity of the n-atomic cluster phase
with respect to the infinitely large phase remains larger than
1%. The difference CV (n) − C inf

V � 0.01 holds for n � 104

atoms, or nanocrystals with cubic shape and 46 atoms on a side.

Figure 2. The increase of the heat capacity CV (n) of a phase
consisting of n-atomic clusters (n = 27, 125 and 1000) with respect
to C inf

V for an infinitely large homogeneous phase as a function of T .
As expected, at high T both the infinitely large homogeneous phase
and the phase consisting of nanoclusters satisfy the Dulong and Petit
3R limit.

Figure 3. The dependence of the relative increase of heat capacity on
the number of atoms n at T = 0.25TE. The deviation of CV (n) from
C inf

V is about 1% for clusters up to 105 atoms (as example:
nanocrystal with cubic shape with 46 atoms on a side).

The heat capacity of nanoclusters in the present model was
compared with experimental data for Fe published in [19, 20].
We found a good agreement with experimental findings for
cubic nanoclusters of 40 nm size. The only fitting parameter
in equation (4) was set to C = 2.3 which provides a
sufficiently adequate evaluation. It is important to notice that
the comparison with experiment is not straightforward, since
the nanocrystalline materials are not perfectly mono-disperse.
Therefore, in the presence of nanoparticles with different sizes,
the contribution of smaller nanocrystals could dominate over
the total heat capacity of the system, (see equation (11)).
Our results are also in line with [21, 22] who reports a
relationship between the melting point, Debye temperature,
size and structure of Lennard-Jones rare-gas clusters.
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The heat capacity of nanocrystals could be also expressed
through the Debye temperatures TD and the corresponding
Debye function FD. However, the direct application of the
Debye model to small atomic complexes is still problematic,
since in a small cluster an additional restriction has to be
accounted for. The wavelength of standing waves could not
exceed the nanocluster size.

3. Conclusions

The present study reveals in a thermodynamic approach
the contribution of surface energy to the heat capacity of
nanoclusters. In the framework of the Lindemann model
of melting, the dependence of specific heat on the cluster
size is shown. At constant temperature (all over the interval
0.05 < T/TE < 1.5) the heat capacity, CV (n), of a cluster
with a comparable number of surface and bulk atoms deviates
significantly from that of the large system. Outside this large
temperature gap, the heat capacity of the phase consisting of
n-atomic nanoclusters and the infinitely large homogeneous
phase are equal. The observed increase of CV (n) reflects the
variation of the effective Einstein temperature T eff

E due to the
interface energy contribution. At fixed nanocrystal size, the
temperature dependence of CV (n) deviates from heat capacity
C inf

V of the respective infinitely large system. Being in good
agreement with recent experimental findings, the specific heat
in the model presented scales at high T with the classical
Dulong and Petit 3R limit and goes to zero for T → 0 as
required by the third law of thermodynamics.
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